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Acoustic gaps in a chain of magnetic spheres
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Acoustic gaps are normally observed in granular inhomogeneous structures made of composite materials.
The modulation of the elastic properties in such media creates the coherent effects of scattering and interfer-
ence that ultimately lead to frequency intervals where sound propagation is forbidden. Contrastingly, we report
here an experimental observation of acoustic gaps in homogeneous media; specifically, in granular chains. The
beads used in our study are magnetic. Therefore, instead of modulating the elastic properties of the chain, we
modulate the magnetization (i.e., the contact forces). We also observe that the propagation speed of acoustic
signals through the magnetic chains used in this study is at odds with the speed predicted by Hertz’s law.
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I. INTRODUCTION

The propagation of acoustic signals through a chain of
identical spheres has achieved, over the years, the status of a
key model to study the sound properties of granular materi-
als. Compressed [1-3] and uncompressed [1,4,5] chains have
been studied with the aim of elucidating the important dif-
ferences between the linear and nonlinear responses ob-
served in granular systems. In principle, two adjacent beads
in a compressed chain deform according to Hertz law: the
deformation &, being proportional to F%/ 3 where F, is the
contact force. If the amplitude of the oscillations is much
smaller than &), a well-known result for a chain of identical
point masses linked by linear springs is recovered [1], where
the spring constant k is proportional to F(l)/ 3, Accordingly,
since the sound velocity in the chain is proportional to k"2,
this in turn is proportional to F(l)/ ®. As a consequence, when
Fy is zero, the chain is unable to transmit sound. Nesterenko
and co-workers found, however, that solitary waves can
propagate through uncompressed chains if the amplitude of
the oscillations is much larger than &, [4—6]. The knowledge
gathered so far about this nonlinear case has induced this
group to recently propose novel applications, including trap-
ping and shock disintegration [7] or bifurcating devices [8].

In this paper, we revisit the phenomenon of sound trans-
mission through a chain of spherical beads. However, the
spheres used in our study are magnetic. Magnetism provides
cohesion, therefore, a chain of such beads can be formed
without the need of an external load [see Fig. 1(a)]. Our aim
here is to discuss two results. First, the speed of an acoustic
signal through a magnetic chain follows a power law with
the magnetic contact force F,,, but the exponent we found is
1/3 instead of the 1/6 obtained in compressed chains. Sec-
ond, frequency gaps are obtained by modulating not the elas-
tic constants of the spheres, but their magnetization. In order
to properly asses the importance of this intriguing behavior,
let us emphasize that acoustic band-gap effects have been
observed only in a periodic composite consisting of two dif-
ferent materials [9,10]. The larger the elastic contrast be-
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tween the constituents of the array, the better defined is the
frequency gap. For instance, an externally loaded chain made
of steel spheres, with Nylon spheres periodically distributed
inside, might have a sound transmission spectrum with at
least one band gap. In the strongly nonlinear case, where
solitons are routinely observed, a granular composite of this
sort is also able to confine and disintegrate solitary waves
[7,11].

II. MAGNETIC INTERACTION

The interaction energy between two dipole moments u;
and p; is given by Uij=//«2r,'_j3[ﬁi'ﬂj_3(ﬂi'fij)(ﬁ«j'fij)],
where r;;=|r;—r;| is the separation distance between the di-
poles and u=|w;|=|u;|. Although this expression is only
valid for ideal dipoles, we can use it to estimate the contact
force between two adjacent spheres, F;;,;, in a chain of N
magnetized particles. We plot in Fig. 2 the contact forces for

two different dipole configurations: (a) the case where the

piezo accelerometer

FIG. 1. (Color online) (a) A chain of magnetic spheres. The
dipoles are aligned in a head-to-tail fashion (—— ——). (b) A
two-dimensional lattice formed by magnetic spheres. Along one of
the axis, the dipoles are aligned as shown in (a) and in the other
they alternate orientations (left and right). (c) The experimental
setup used in the experiments.
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FIG. 2. (Color online) (a) Contact forces for chains of different
lengths, with N=6,11,16,21. The configuration of the dipoles is in
the head-to-tail fashion. Note that the contact forces are smaller at
the boundaries of the chains due to the nature of the magnetic
interaction. (b) Contact forces for chains with N=6,11,16,21,
where the dipoles alternate orientations. Note that the contact forces
are smaller (greater) at the boundaries of the chains due to the
nature of the dipole-dipole interaction.

dipoles are oriented in a head-to-tail fashion (— — —
—--+) and (b) the case where they alternate orientations. It is
worth to remark that although both configurations are cohe-
sive (see Fig. 2), only the first one is stable in real conditions.
Indeed, any minor misalignment in the orientation of the
dipoles in the second configuration produces a rapid sphere
rotation and the complete chain flips to the head to tail form.
Interestingly, however, this second array becomes stable if
head to tail chains are assembled in a two-dimensional (2D)
lattice [see the central chain in Fig. 1(b)] [12].

III. EXPERIMENTAL DETAILS AND RESULTS

We start measuring the sound speed in a chain of 20 mag-
netic spheres as a function of the magnetic contact force. The
spheres have a diameter d of 5 mm and were purchased
(SuperMagnetM) with a permanent magnetic dipole which
we estimated to be ©=0.07 A m? (this value corresponds to
a surface field intensity of 6.4 kG, measured with a Lake-
shore Gaussmeter 475). The spheres are made of a NdFeB
mixture and are covered by the manufacturer with a hard
epoxy layer. Using a temperature-controlled furnace, the
beads are heated to reduce their magnetization. Therefore,
chains can be formed with different cohesive forces, which
are easily obtained by carefully measuring the force needed
to separate the chains by the middle. A piezoelectric is put in
contact with the first sphere of the chain and an accelerom-
eter (DeltaTron-BK, 1000 mV/g) is attached to the last one
[see Fig. 1(c)]. The piezoelectric, driven by a function gen-
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FIG. 3. (a) Acoustic pulse sent through a chain of magnetic
spheres. The pulse has a width of 2 us. (b) The signal measured at
the end of the chain. At is the time of flight of the pulse in the chain.
Note that the accelerometer takes around 400 wus to relax.

erator (HP-33120A), injects to the chain a 2 us square
pulse. By measuring the time of flight of the front edge of
this narrow pulse with an oscilloscope Agilent 54641A (see
Fig. 3) and knowing the length of the chain (in this case, 10
cm), the speed of sound is obtained (Fig. 4). We found that
the velocity measured in this way compares reasonably well
to the velocity of a real wave, which can be produced as an
steady-state wave at some frequency lower than a cutoff fre-
quency. Since the speed of sound is proportional to the cutoff
frequency (see [1]), the speed can be estimated if we experi-
mentally find this frequency (see the red dots in Fig. 4). Our
results indicate that the narrow pulse used in the first method
does not spread much during the propagation.

We observe that the greater is the contact force between
the beads, the higher is the sound speed (see Fig. 4). The data
are reasonably well fitted by a power law with an exponent
of 1/3 (see also the log-log plot in the inset of the figure). In
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FIG. 4. (Color online) Speed of sound as a function of the con-
tact force in the middle of the chain. Data are well fitted by a power
law with an exponent 1/3 (see also the log-log plot in the inset).
Black squares were measured as indicated in the text and red dots
were obtained by first measuring the cutoff frequencies (frequencies
at which no signal propagates) and then using the expression V
=2maf,, where a is the radius of the beads (see [1]). We show, for

comparison, the speed of sound predicted by Hertz’s law (exponent
1/6).
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FIG. 5. (Color online) Contact forces in short chains as a func-
tion of length. Each chain is formed by five and a half cells and
each cell by five magnetic (yellow) and (a) no, (b) two, (c) three,
and (d) four nonmagnetic spheres (black).

principle, this value differs from the classical result given by
Hertz model, which predicts an exponent of 1/6 [1] (see dot-
ted line in Fig. 4). It is important to mention, however, that
an exponent of 1/4 has been found in other experiments
[3,13,14]. Although the nature of the 1/4 exponent is still an
unsettled controversy in the literature, it is believed that this
exponent may have its root in a modified Hertz’s law that
takes place when the compression force is significantly re-
duced, from around 200 to 20 N [3]. Hence, we speculate
that the exponent we found in our experiment is greater than
1/4 because the contact forces are further reduced (to around
3 N, as seen in Fig. 4). More research is needed to elucidate
the nature of this exponent.

As mentioned before, a second experiment was carried
out to see if the magnetic chain behaves as a phononic crys-
tal when nonmagnetic (i.e., fully demagnetized) beads are
periodically inserted inside. In principle, this insertion could
modulate the acoustic impedance within the chain, affecting
the outcome of a sound wave traveling through it. The chains
are formed by N=25 cells, each cell, in a given chain, having
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FIG. 6. (a) Acoustic signal sent through a chain of magnetic
spheres. The signal is composed by a 20 ms wave train, where the
frequency increases with time from 1 kHz to 15 kHz. (b) Signal
measured at the end of the chain.

PHYSICAL REVIEW E 81, 011301 (2010)

Amplitude (arb. units)

0.025+

0.0204

0.015+

0.010

0.005

0.000

0 5 10 15 20
Frequency (kHz)

FIG. 7. (Color online) Power spectra of the transmitted pulse as
the number of nonmagnetic spheres (n) is increased; (a) n=0, 7
=1, f,=9.5 kHz, 0=4.5 kHz, and \=0.95; (b) n=2, 5=0.61, f,
=7.6 kHz, 0=3.5 kHz, and \=0.22; (¢) n=3, %=0.58, fy
=6.1 kHz, 0=3.5 kHz, and \=0.14; (d) n=4, =054, f,
=5.2 kHz, 0=3.5 kHz, and A=0.025. Black dots are experimental
data and the (blue) curve the theoretical prediction.

five magnetic and n nonmagnetic beads, where n can be 1, 2,
3, or 4. Once the nonmagnetic beads are placed inside the
chain, they, of course, remagnetize a bit, guaranteeing the
cohesion of the chain. However, the greater is n, the weaker
the contact forces in such segments and thus, the higher the
contrast between these and the magnetic beads. Figure 5
helps to illustrate the modulation of these contact forces in a
chain made of five and a half cells.

In principle, there are two ways to obtain the power spec-
trum of a sonic pulse traveling through a linear chain: the
so-called normal-mode analysis (NMA) and the pulse analy-
sis (PA) (see, for example, [15]). In the first one, an oscilla-
tion with a given frequency is transmitted through the struc-
ture and as this frequency is varied, the arriving signal is
recorded. In the second one, a pulse, rich in frequencies, is
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generated and sent through the chain. The signal is measured
with a receptor and then Fourier transformed. The PA
method is much faster, but the frequency composition of the
pulse has to be previously determined. We implemented a
third method, closely related to the second one. It consists in
propagating a train of sinusoidal waves. It consists of a wave
where the frequency increases in time. The detector acts as
an integrator and the recorded signal is Fourier transformed.
Figure 6 shows a typical train and a typical received signal.

We show in Fig. 7 the power spectra of the transmitted
wave for the four chains considered. As previously stated,
the chain are formed by 25 cells and each cell incorporates
an increasing number of impurities (nonmagnetic spheres).
There is clearly a frequency gap in the last three spectra. The
case for n=1 is not shown because it is similar to the case
where all the beads are magnetic n=0. We observe that the
spectra, together with the gaps, shift to lower frequencies as
n grows. Considering that the length of the chain grows, this
shift is expected.

IV. DISCUSSION

A theoretical model to back-up our experimental results is
presented next. The model uses a handy mathematical ex-
pression reported by Griffiths and Steinke [16], who solved
the general theory of wave propagation in locally (finite)
periodic media, using the framework of the transfer matrix.
A sinusoidal signal of a given frequency f, propagating
through a finite periodic one-dimensional (1D) system like
the one shown in Fig. 5, is transmitted with a transmission
coefficient given by [16]: T=[1 +z2(%¥)2]", where z
=e_sin(kyb), y=cos'(§), and E=cos(k,b)cos(kL)
—€, sin(k,b)sin(k|L). €, k, 5, b, and L are defined as fol-
lows: e.=1/2(np=x1/7), k=Qmf)/v;, n=xr/Kky=v,y/v;, b
=nd, and L=35d. Since all the beads in the chain (magnetized
and nonmagnetized) are elastically identical, 7 is simply the
ratio of the acoustic impedances and this ratio is taken as the
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only free parameter to fit the position and shape of the acous-
tic gaps. However, we have to solve first the following in-
convenient: Griffiths and Steinke’s theory restricts itself to
the case of nondissipative waves, while in our case the sound
propagation is strongly dissipative. Therefore, we propose to
simply multiply 7 by an ad hoc function that gives us the
possibility to mimic the attenuation and its frequency behav-
ior. Then, the2 modified transmission coefficient 7,, is T,
=\ exp[—(f:%())]T, where f|, is the frequency at which a given
spectrum is centered, o its width, and N\ an attenuation coef-
ficient that is obtained by inspection. The ad hoc function is
Gaussian because the spectrum associated to n=0 has clearly
this form. The reasonable agreement we found with the ex-
perimental results (see the line in Fig. 7) is worth to be
mentioned. First, a compact mathematical expression that
has its origin in a quantum-scattering theory is able to fully
describe a finite mechanical system. Second, to fit the data,
we used only one free parameter, 7, and this parameter is
simply the ratio of two velocities.

V. CONCLUSIONS

We conclude that a linear chain of beads with no external
compression is able to propagate sound if the beads attract
each other by an internal magnetic force. We found that the
speed of an acoustic signal is proportional to F ,1,{3. In addi-
tion, and most important, if the magnetic interaction between
beads (i.e., the contact strength) is modulated by the inser-
tion of fully demagnetized beads of the same material, fre-

quency gaps appear.
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